

SANT'ORSOLA

Drugs in Drugs Hematology

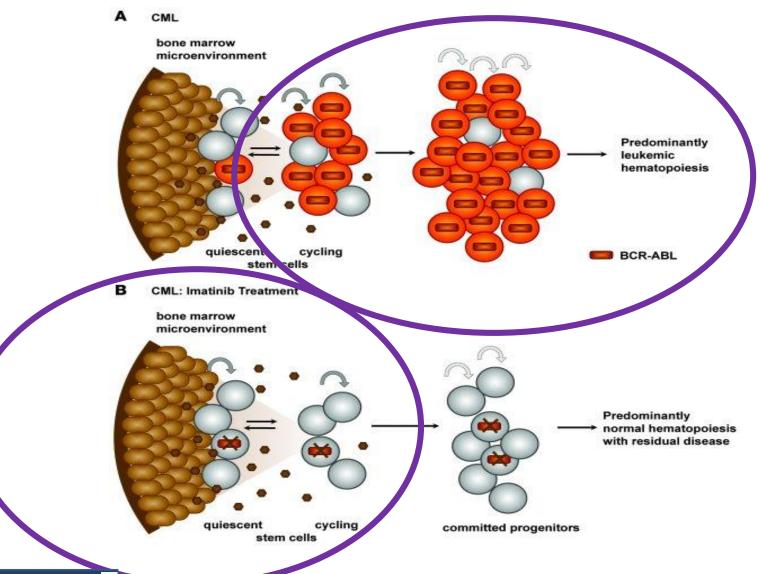
President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton May 18-20, 2022

New Drugs in Hematology

Ponatinib

Gianantonio Rosti, MD
Deputy Scientific Director
IRCCS/SIRHHC Scientific Institute for Research, Hospitalization
and Health Care
«Dino Amadori» – Meldola (FC), Italy

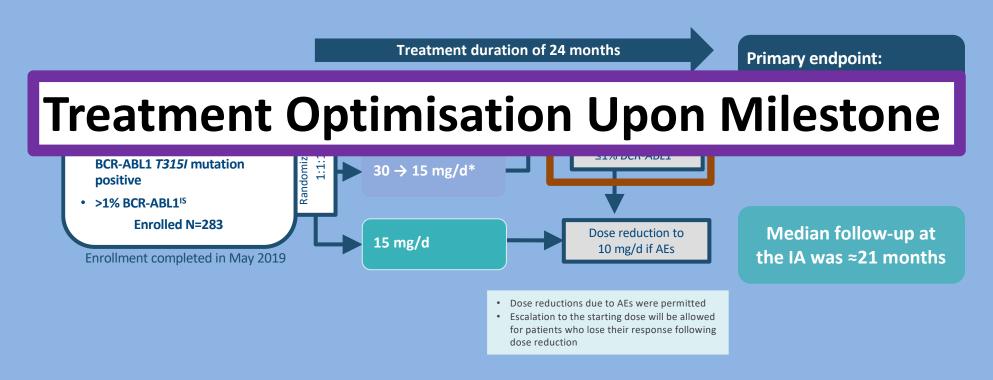

New Drugs im Hematology

Company	Research Support	Employee	Consultant		Speaker Bureau	Advisory Board
Novartis	YES	NO	YES	NO	YES	YES
BMS	YES	NO	NO	NO	YES	NO
Pfizer	YES	NO	YES	NO	YES	NO
Incyte	Yes	NO	YES	NO	Yes	YES

New Drugs in Hematology

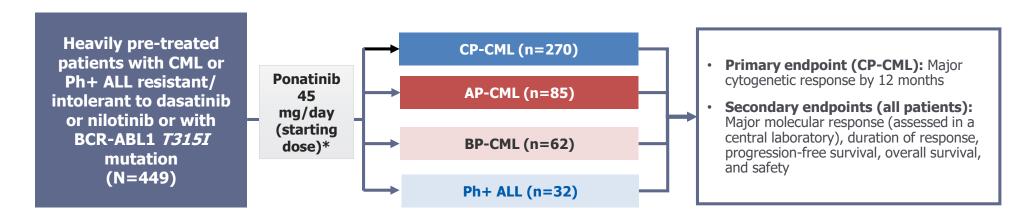
Drug		Salvage		Frontline			
	Initial approval	Current	Should be	Initial attempt	Approved	Should be	
Imatinib	400 mg QD	400 mg QD	600-800 mg QD?	400 mg QD	400 mg QD	600-800 mg QD	
Dasatinib	70 mg BID	100 mg QD	50-100 mg QD?	100 mg QD	100 mg QD		
Nilotinib	400 mg BID	400 mg BID	400 mg QD/BID?	300-400 mg BID	300 mg BID	300 mg BID	
Bosutinib	500 mg QD	500 mg QD	400 mg QD?	500 mg QD	400 mg QD	200 > 300 mg? 300 > 400 mg? 400 mg QD	
Ponatinib	45 mg QD	45 mg QD	45, 30, 15 mg QD?	45 mg QD			

Figure 8: Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity



J Ciin Invest DOI: 10.1172/JCI35721

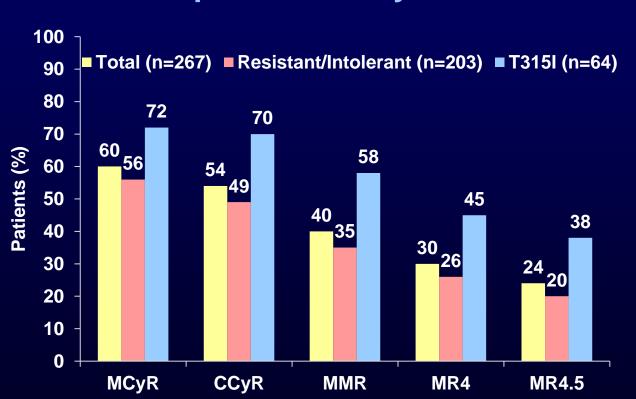
Ponatinib (today) (Starting dose and dose optimization)

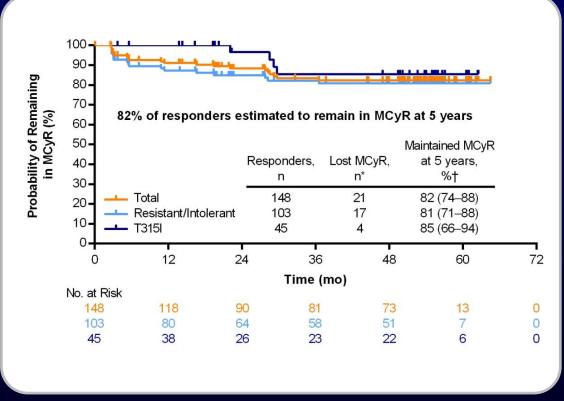

OPTIC (OPTIMIZING PONATINIB TREATMENT IN CP-CML)

Ponatinib (yesterday – all my troubles seem so far away)

PACE: PHASE 2, OPEN-LABEL TRIAL DESIGN (NCT01207440)

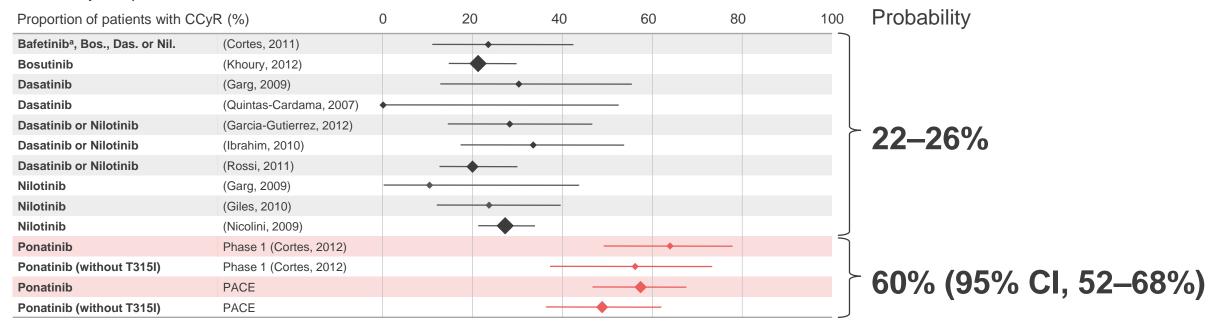
Study start: September 21, 2010; study completion: August 31, 2017


Dose reductions were permitted for toxicity and mandated in October 2013 to manage the risk of arterial occlusive events (AOEs) in response to an observed accumulation of AOEs with longer follow-up in the ponatinib clinical program


Efficacy of Ponatinib in CP-CML

Median times to MCyR 2.8 (1.6–58.0) mo, CCyR 2.9 (1.6–58.0) mo, and MMR 5.5 (1.8–55.4) mo

Responses at Any Time



Duration of MCyR

Sequential use of 2G TKIs: Comparing effectiveness

 Proportion of CP-CML patients who achieve a CCyR (after failure of ≥1 2G TKI and ≥2 prior TKI therapies)

The probability of achieving CCyR with ponatinib was more than twice that achieved by sequential
use of 2G TKIs ¹

The size of the diamonds in the figure represents the number of patients; the length of the lines shows the 95% confidence intervals.

The expected probability of achieving a CCyR was 22–26% vs. 60% under ponatinib.

^a Bafetinib is not approved for the treatment of patients with CML, treatment only in the context of clinical studies. 2G, second-generation; Bos, bosutinib; CCyR, complete cytogenetic response; CI, confidence interval; CML, chronic myeloid leukaemia; CP, chronic phase; Das, dasatinib; Nil, nilotinib; TKI, tyrosine kinase inhibitor.

PACE: response rates by mutation status

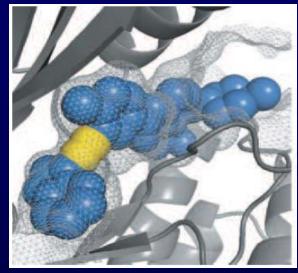
PACE response rate, n (%)

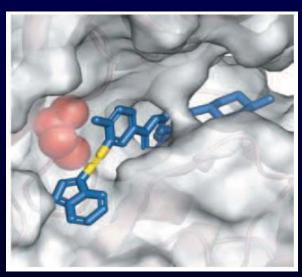
Mutation status at entry, CP-CML	MCyR*	CCyR*	MMR [†]
No mutation detected (n=136)	66 (49)	52 (38)	43 (32)
Any mutation (n=131)	82 (63)	71 (54)	62 (47)
T315I mutation only (n=50)	37 (74)	34 (68)	30 (60)
Mutations other than T315I (n=67)	37 (55)	29 (43)	25 (37)
Mutations in addition to T315I (n=14)	8 (57)	8 (57)	7 (50)

- In preclinical and clinical studies, no single mutation that conferred resistance to ponatinib has been identified
- In a post-hoc analysis, patients with T315I mutations were younger, were more recently diagnosed, had received fewer prior TKIs, and a higher dose intensity of ponatinib than otherwise resistant/intolerant patients²
- Notable: Ponatinib has substantial activity in patients with no mutations, where mechanism of resistance is assumed to be non–BCR-ABL dependent

Vascular Occlusive Events in Ponatinib Phase 2 Trial: 60-Month Final Report

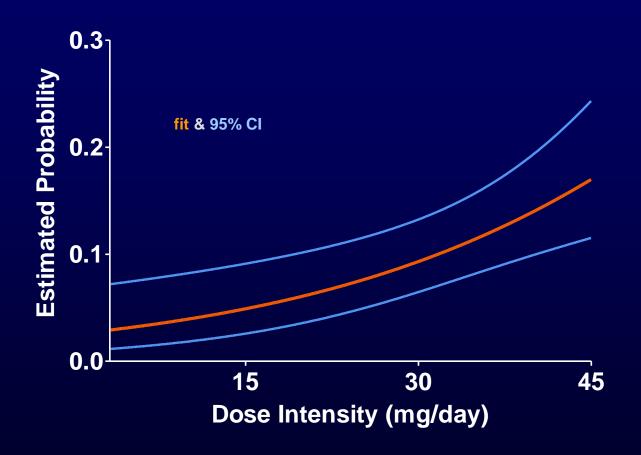
	CP-CML (n=270)		Total (n=449)
	AE	SAE	AE	SAE
Cumulative exposure, patient-years	615.7		826.0	
AOEs, n (%)	84 (31)	69 (26)	111 (25)	90 (20)
Cardiovascular	42 (16)	33 (12)	59 (13)	44 (10)
Cerebrovascular	35 (13)	28 (10)	41 (9)	33 (7)
Peripheral vascular	38 (14)	31 (11)	48 (11)	38 (8)
Exposure-adjusted* incidence of ATEs	14.1	10.9	13.8	10.6
VTEs, n (%)	15 (6)	13 (5)	27 (6)	23 (5)
Exposure-adjusted* incidence of VTEs	2.1	1.8	2.8	2.4


- Median (range) time to ATE onset in CP-CML: 14.1 (0.3-44.0) mo
- Median (range) time to VTE onset in CP-CML: 22.3 (2.0-40.2) mo
- 46 CML-CP and 57 overall had >1 AOE


^{*}Number of patients with events per 100 patient-years. Median follow-up time was 42.3 months.

Ponatinib A Pan-BCR-ABL Inhibitor

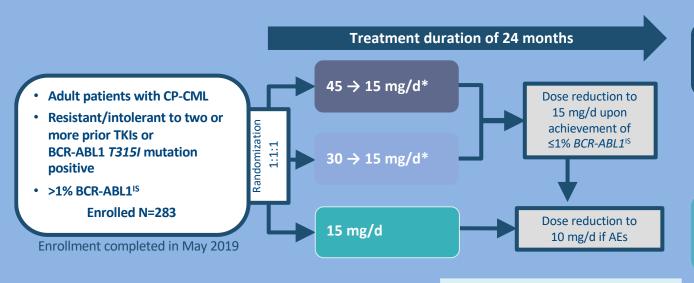
- Rationally designed inhibitor of BCR-ABL
- Active against T315I mutant
 - Unique approach to accommodating gatekeeper residue
- Potent activity against an array of BCR-ABL variants
- Once-daily oral activity
- Half-life ≈ 22 hours
- Also targets other therapeutically relevant kinases:
 - Inhibits FLT3, FGFR, VEGFR and PDGFR, and c-KIT


O'Hare T, et al. Cancer Cell. 2009;16:401-412

Ponatinib Phase 2 Study Demographics & CV Risk Factors

	No Arterial Thrombotic AE N=372	Any Arterial Thrombotic AE N=77
Age ≥65 yrs, n (%)	120 (32)	35 (45)
≥1 Risk factor, n (%) ^a	218 (59)	67 (87)
Hypertension, n (%)	179 (48)	60 (78)
Diabetes, n (%)	34 (9)	23 (30)
Hypercholesterolemia, n (%)	79 (21)	37 (48)
History of any ischemic disease, n (%)	65 (17)	35 (45)
History of myocardial infarction, n (%)	8 (2)	10 (13)
History of CAD, n (%)	18 (5)	15 (19)
History of coronary revasc, n (%)	6 (2)	8 (10)
History of stroke, n (%)	3 (1)	3 (4)
Prior exposure to any TKI ^b Mean yrs [range]	4.8 [0.1-12.1]	6.3 [0.4-13.3]
Prior exposure to nilotinib		
n (%)	242 (65)	47 (61)
Mean yrs [range]	1.2 [0.01-5.9]	1.6 [0.02-5.8]

^aRisk factors = hypertension, hypercholesterolemia, diabetes and obesity; ^bIncludes approved (imatinib, dasatinib, illustrational matter and bosutinib) and investigational TKIs


Ponatinib Phase 2 Study Multivariate Analysis of Arterial Thrombotic AEs

- Risk factors significantly associated with arterial thrombotic AEs:
 - Older age (p<0.0001)</p>
 - History of diabetes (p=0.0003)
 - Higher dose intensity to time of 1st event (p=0.0009)
 - History of ischemia (p=0.0087)
 - Longer time since diagnosis (p=0.0228)
 - Higher baseline neutrophils (p=0.0276)
 - Higher baseline platelets (p=0.0466)
- Each 15 mg/day reduction in dose intensity results in a predicted reduction of ~40% in the risk of an arterial thrombotic event

Ponatinib (today) (Starting dose and dose optimization)

OPTIC (OPTIMIZING PONATINIB TREATMENT IN CP-CML)

Primary endpoint:

≤1% BCR-ABL1 s at 12 months

The IA is descriptive and no statistical inference can be made

Median follow-up at the IA was ≈21 months

- Dose reductions due to AEs were permitted
- Escalation to the starting dose will be allowed for patients who lose their response following dose reduction

OPTIC (Optimizing Ponatinib Treatment In CP-CML): Ongoing, Multicenter, Randomized Phase 2 Trial

Ponatinib Dose-Ranging Study in Chronic-Phase Chronic Myeloid Leukemia:

A Randomized, Open-Label Phase 2 Clinical Trial

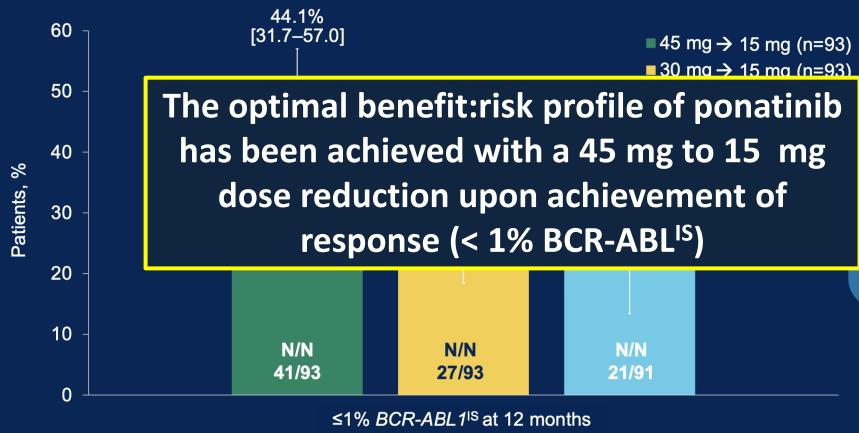
Jorge Cortes, Jane F Apperley, Elza Lomaia, Beatriz Moiraghi, Maria Soledad Undurraga, Carolina Pavlovsky, Charles Chuah, Tomasz Sacha, Jeffrey H Lipton, Charles A. Schiffer, James McCloskey, Andreas Hochhaus, Philippe Rousselot, Gianantonio Rosti, Hugues de Lavallade, Anna Turkina, Christine Rojas, Christopher Arthur, Lori J Maness, Moshe Talpaz, Michael J Mauro, Tracey Hall, Vickie Lu, Shouryadeep Srivastava, Michael W Deininger; *Blood* 2021; blood.2021012082.

^aDose reductions due to AEs were permitted;

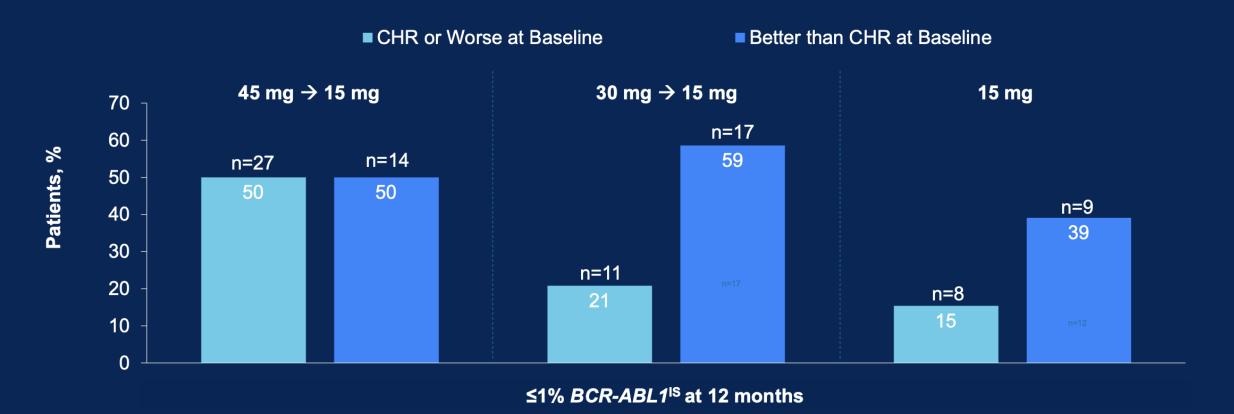
bEscalation to the starting dose allowed for patients who lose their response following dose reduction; no dose escalation allowed beyond starting dose
AE, adverse event; AOE, arterial occlusive event; CCyR, complete cytogenetic response; CP, chronic-phase; CV, cardiovascular; IA, interim analysis; IS, International Scale;
MCyR, major cytogenetic response; MMR, major molecular response; TKI, tyrosine kinase inhibitor; VTE, venous thromboembolism

Overall study population Baseline mutational status and treatment characteristics

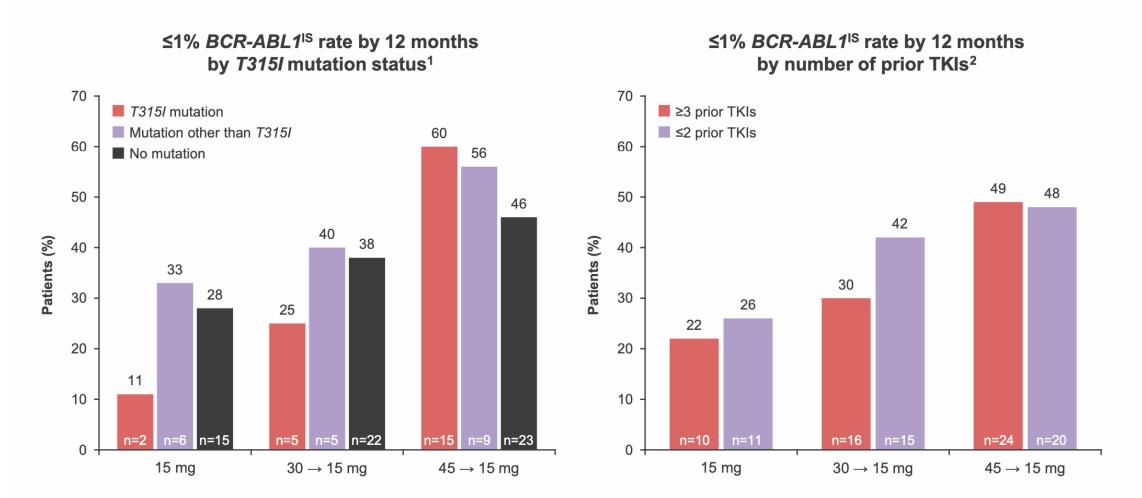
Demographic/disease characteristic ^{1,2}		15 mg/d (n=94)	30 → 15 mg/d (n=94)	45 → 15 mg/d (n=94)	
Mutation at baseline*, n (%)	No mutation detected	54 (57.4)	58 (61.7)	51 (54.3)	
	Any mutation	38 (40.4)	35 (37.2)	41 (43.6)	
	T315I	20 (21.3)	21 (22.3)	25 (26.6)	
	Other [†]	18 (19.1)	14 (14.9)	16 (17.0)	
	1 mutation detected	33 (35.1)	29 (30.9)	31 (33.0)	
	≥2 mutations detected	5 (5.4)	6 (6.4)	10 (10.6)	
Reason prior therapy stopped, n (%)	Resistant	94 (100.0)	94 (100.0)	92 (97.9)	>99% were resistant to immediate prior therapy
Prior TKIs, n (%)	1	4 (4.3)	1 (1.1)	1 (1.1)	Almost all patients were
	2	42 (44.7)	37 (39.4)	43 (45.7)	treated with ≥2 prior
	≥3	48 (51.0)	56 (59.6)	50 (53.2)	TKIs


1. Cortes JE, et al. ASCO 2020 [abstract 7502/oral presentation]; 2.Cortes JE, et al. ASH 2020 [abstract 632/oral presentation]

^{*}Sanger sequencing was used for mutation testing. Five patients (2 in 15 mg/d cohort, 1 in 30 \rightarrow 15 mg/d cohort, and 2 in 45 \rightarrow 15 mg/d cohort) did not have any mutation testing performed at baseline; †Mutation other than *T315I*


TKI, tyrosine kinase inhibitor

Primary Endpoint: *BCR-ABL1*^{IS} ≤1% at 12 Months


- The response rate was highest with the 45 mg → 15 mg regimen, 44.1% (31.7–57.0)
- The pre-specified statistical endpoint was met with the 45 mg → 15 mg regimen (P<0.017)

BCR-ABL1^{IS} Response Rate by Best Response to Last Prior Therapy

CHR, complete hematologic response

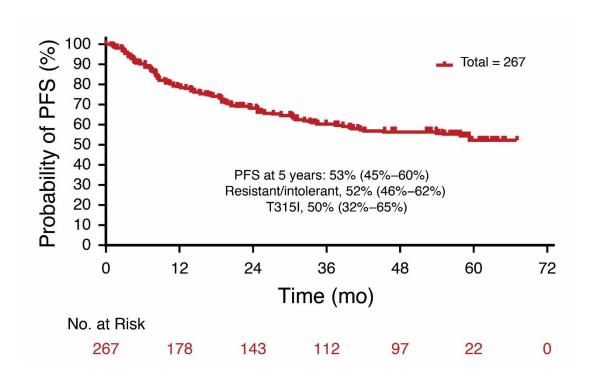
Outcome by mutation status and line of treatment in OPTIC, a dose-ranging study of 3 starting doses of ponatinib in patients with CP-CML

The recommended starting dose of ponatinib is 45 mg once daily.

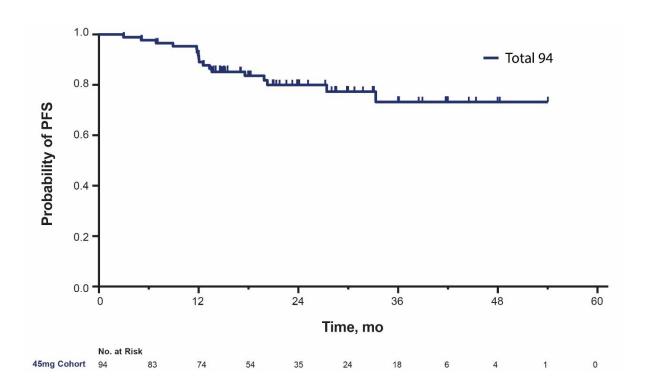
CML, chronic myeloid leukaemia; CP, chronic phase; IS, international scale;

OPTIC, Optimizing Ponatinib Treatment In CP-CML; TKI, tyrosine kinase inhibitor.

1. Cortes JE, et al. *Blood*. 2021. Epub ahead of print; 2. Cortes JE, et al. Oral Presentation at ASH 2020; Abstract 48.

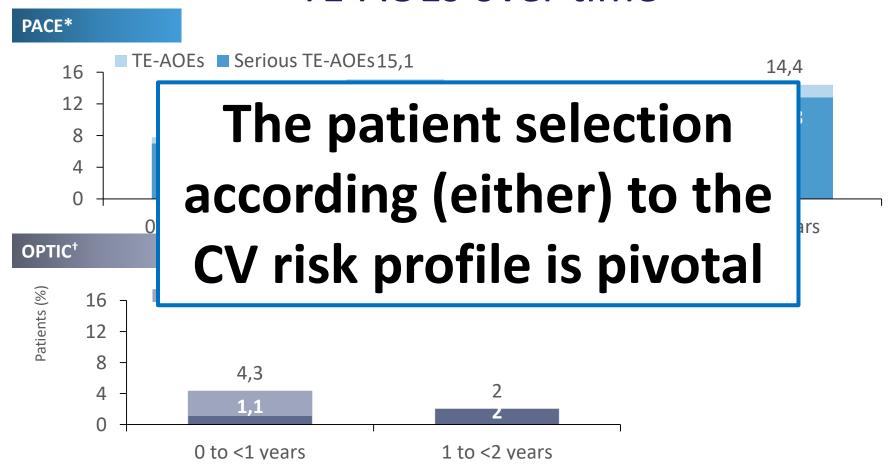

Characteristic		PACE CP-CML (n=257)	OPTIC 45 → 15 mg/d (n=93)
Age, years	Median	61	46
Gender, n (%)	Male	134 (52)	49 (53)
Time since dx, years	Median	7	6
Mutation at baseline, n (%)	No mutation	136 (53)	52 (56)
	Any mutation	121 (47)	40 (43) [†]
	T315I	54 (21)	24 (26)
	Other*	67 (26)	16 (17)
CV risk factor, n (%)	Hypertension	99 (39)	29 (31)
	Diabetes	33 (13)	5 (5)
	Hypercholesterolemia	65 (25)	3 (3)
Reason for prior treatment D/C, n (%)	Resistance	247 (96)	91 (98)

97% (338/350) were resistant to ≥1 prior 2G TKI


Kantarjian H, et al. ASH 2020 [abstract 647/oral presentation]

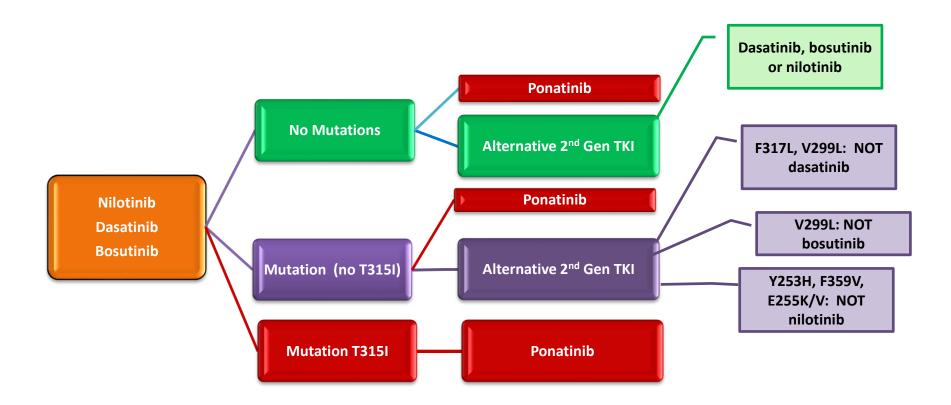
Results Figure 5: Progression-Free Survival

PACE PFS


OPTIC PFS (45 mg > 15 mg cohort)

- Median follow-up: 57 months
- 80% of patients stopped prior treatment due to resistance

- Median follow-up: 32 months
- 98% of patients stopped prior treatment due to resistance

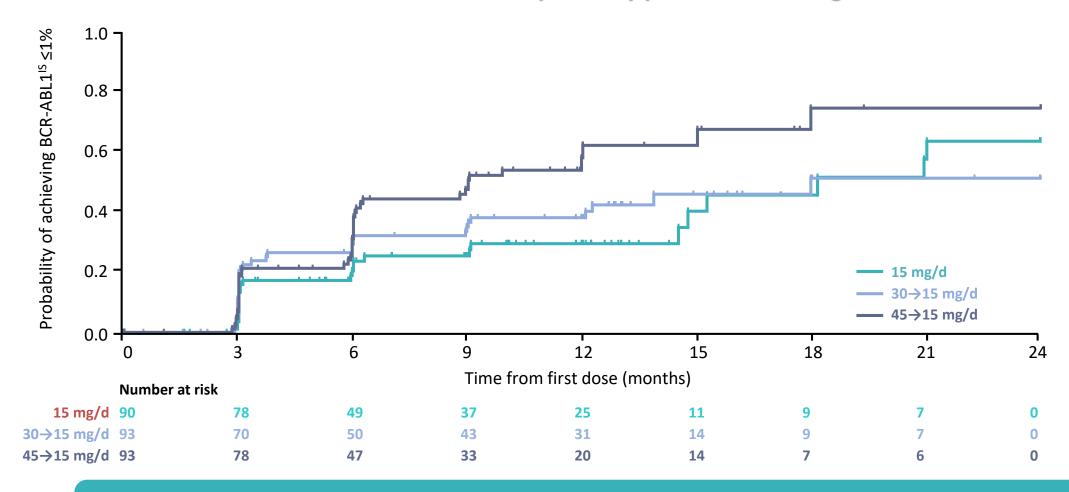

Exposure-adjusted cumulative adjudicated TE-AOEs over time

^{*}Median follow-up 57 months; †Median follow-up 21 months

2G, second generation; ALL, acute lymphoblastic leukemia; (TE-)AOE, (treatment-emergent-)arterial occlusive event; CML, chronic myeloid leukemia; CP, chronic phase; OPTIC, Optimizing Ponatinib Treatment In CP-CML; PACE, Ponatinib Ph+ ALL and CML Evaluation; Ph+, Philadelphia chromosome-positive; TEAE, treatment-emergent adverse event; TKI, tyrosine kinase inhibitor

Resistance to a 2nd gen TKI in first line (2023)

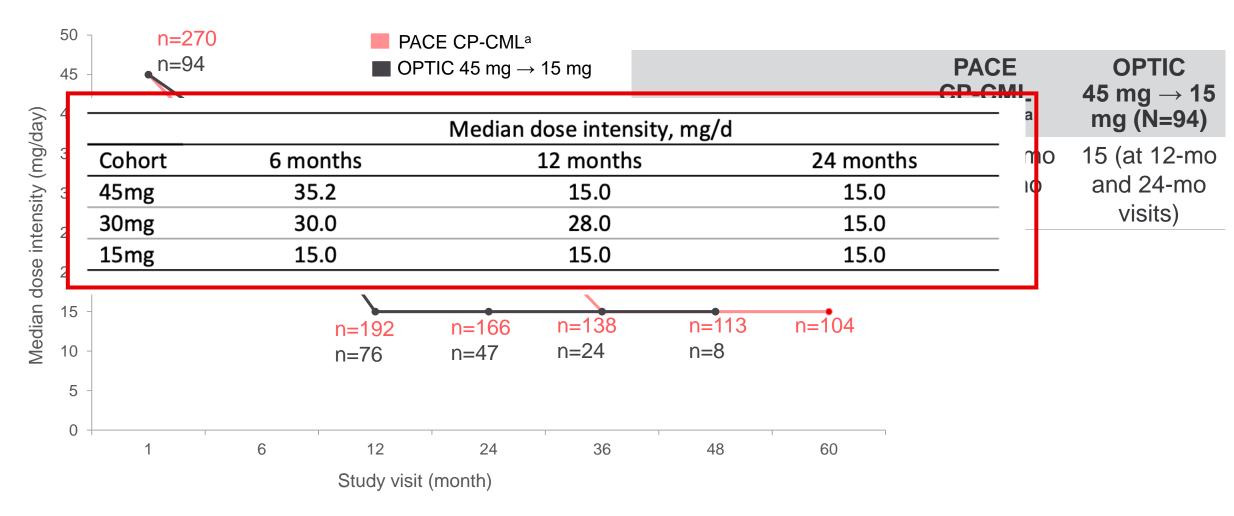
New Drugs in Hematology


Thank you for your kind attention!

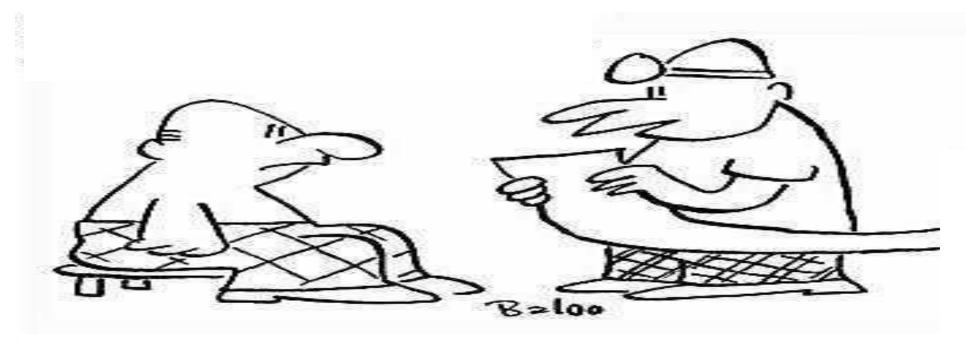
Gianantonio Rosti, MD
Deputy Scientific Director
IRCCS/SIRHHC Scientific Institute for Research, Hospitalization
and Health Care
«Dino Amadori» – Meldola (FC), Italy

Overall study population Time to ≤1% BCR-ABL1^{IS} response by ponatinib starting dose

- \leq 1% BCR-ABL1^{IS} was achieved as early as 2.9 months in all three dosing regimens
- The 45→15 mg/d cohort demonstrated the highest ≤1% BCR-ABL1^{IS} rate, and these rates were maintained until 24 months


Overall study population Patient demographics and baseline disease characteristics

Demographic/disease characteristic ¹	15 mg/d (n=94)	30 → 15 mg/d (n=94)	45 → 15 mg/d (n=94)	
Age, years	Median (range)	49.0 (18–81)	50.5 (21–77)	46.0 (19–81)
Gender, n (%)	Male	53 (56.4)	38 (40.4)	50 (53.2)
ECOG PS, n (%)	0 or 1	94 (100)	93 (98.9)	93 (98.9)
Time since diagnosis, years	Median (range)	5.7 (1–22)	4.9 (1–29)	5.5 (1–21)
Patients with CV risk factors, n (%)	Arterial hypertension	22 (23.4)	25 (26.6)	26 (27.7)
	Diabetes mellitus	7 (7.4)	3 (3.2)	5 (5.3)
	Hypercholesterolemia	15 (16.0)	14 (14.9)	19 (20.2)
	Median BMI (kg/m²)	26	26	27


• OPTIC excluded patients with *uncontrolled* hypertension or diabetes (as well as patients with significant uncontrolled or active CV disease), but did include patients with *controlled* hypertension or diabetes³

1. Cortes JE, et al. ASCO 2020 [abstract 7502/oral presentation]; 2.Cortes JE, et al. ASH 2020 [abstract 632/oral presentation];

Median Dose Intensity Over Time in PACE and OPTIC

CML, The TKI dose

According to your Sokal, Euro, MDACC, ELTS scores, MDR genotype OCT-1 activity, GEP, Cytogenetics, OCA, ACA, whole genome sequencing, age, sex, race, PK, BCR-ABL IC50, pharmacodynamic and comorbidities and co-treatments your tailored dose of TKI is 12,23 mg four times a day, more or less.....

Characteristic		PACE CP-CML (n=257)	OPTIC 45 → 15 mg/d (n=93)
Number of prior	1	6 (2)	0
2G TKIs, n (%)	2	92 (36)	43 (46)
	3	146 (57)	42 (45)
	4	13 (5)	8 (9)
Best response to	None/PD	61 (24)	12 (13)
prior TKI, n (%)*	CHR	68 (26)	54 (58)
	MCyR	63 (25)	7 (8)
	CCyR*	36 (14)	7 (8)
	MMR	10 (4)	12 (13)
BCR-ABL1 ^{IS} at	>10%	194 (75)	73 (78)
baseline, n(%)	>1-10%	49 (19)	16 (17)
	≤1%	12 (5)	2 (2)

Kantarjian H, et al. ASH 2020 [abstract 647/oral presentation]

Ponatinib efficacy post-2G TKI by baseline mutational status

Outcome		PACE CP-CML (n=257)				OPTIC 45 → 15 mg/d (n=93)			
		None (n.136	<i>T315I</i> (n=54)	Other* (n=67)	Any (n=121)	None (n=52)	<i>T315I</i> (n=24)	Other* (n=16)	Any (n=40)
≤1% BCR-ABL1 ^{IS} by:	1 year, %	36	56	43	49	38	63	53	59
	2 years, %	40	59	46	52	46	63	56	60
	5 years, %	42	61	46	53	N/A	N/A	N/A	N/A
DEC at	2 years, %	71	70	57	63	81	83	76	80
PFS at:	5 years, %	58	47	46	45	N/A	N/A	N/A	N/A
OS at:	2 years, %	91	78	80	79	90	100	92	95
	5 years, %	80	62	67	64	N/A	N/A	N/A	N/A

Kantarjian H, et al. ASH 2020 [abstract 647/oral presentation]

Ponatinib efficacy post-2G TKI by baseline mutational status

Outcome		PACE CP-CML (n=257)				OPTIC 45 → 15 mg/d (n=93)			
		None (n.136	<i>T315I</i> (n=54)	Other* (n=67)	Any (n=121)	None (n=52)	<i>T315I</i> (n=24)	Other* (n=16)	Any (n=40)
	1 year, %	36	56	43	49	38	63	53	59
≤1% BCR-ABL1 ^{IS} by:	2 years, %	40	59	46	52	46	63	56	60
	5 years, %	42	61	46	53	N/A	N/A	N/A	N/A
DEC et	2 years, %	71	70	57	63	81	83	76	80
PFS at:	5 years, %	58	47	46	45	N/A	N/A	N/A	N/A
OS at:	2 years, %	91	78	80	79	90	100	92	95
	5 years, %	80	62	67	64	N/A	N/A	N/A	N/A